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In this Supplementary Material, we provide additional
details regarding the neural network architecture used in
our experiments (Sec. 1), our training procedure (Sec. 2)
and the baseline selection process (Sec. 3). Then, we detail
the results of our human evaluation in Sec. 4. Finally, we
report more qualitative results in Sec. 6. Importantly, this
document is completed with two webpages (see play.html
and main.html). The first contains a fully playable demo of
CADDY running locally in the browser, the second shows
qualitative results. Note that, to guarantee better compati-
bility across devices, our browser demo runs on CPU and
may require up to ten seconds to load, while our complete
model runs on GPU in real-time. Due to the limitations
on the size of the submission files, it was possible to in-
clude only the model trained on the Atari Breakout dataset.
Also, html format offers more possibilities in term of visu-
alization (e.g. videos) and should be favored for qualitative
evaluation.

1. Architecture details
In this section, we report further details regarding our

network architecture. We show a detailed view in Fig. 1.
Block details. We mainly employ six types of blocks
to build our architecture: convolution blocks, residual
blocks, up-sampling blocks, convolutional LSTMs, fully
connected layers and Gumbel-Softmax sampling blocks.
All our blocks use Leaky-ReLu activations with the ex-
ception of convolutional LSTM blocks and of final con-
volutional blocks producing the outputs, which are termi-
nated by a tanh function. Down-sampling is achieved using
average-pooling. Our up-sampling blocks instead make use
of a convolution and bilinear interpolation. We make use of
3×3 convolutions in all the layers, with the exception of the
convolution outputting the predicted frame at the original

*The second and third authors contributed equally to the work.

Tf Tinitial Tfinal batch size K

Atari Breakout 6 7 9 8 3
BAIR 6 7 12 8 7
Tennis 6 7 12 6 7

Table 1: Hyperparameters used on the different datasets.

resolution, which uses 7×7 filters.
Multiresolution. As explained in Sec. 3.3 of the main pa-
per, the decoder network D outputs images at multiple res-
olutions. Practically, we produce two lower resolution ver-
sions of the output image, one with halved resolution and
one with one-fourth resolution. These are produced by two
auxiliary convolutional blocks which take as input the fea-
tures produced by the up-sampling layers at the correspond-
ing resolution.

2. Training details

Optimization. In all our experiments, we use an Adam op-
timizer with a fixed learning rate of 2e−4.
Sequence length scheduling. During the initial phase of
training, we notice greater stability with small values of T ,
while, on the other hand, training with large values of T
increases the quality of long generated sequences. For this
reason, we adopt a training scheme with a variable value
of T . In particular, every 5000 iterations, we increase the
current value of T by 1 until the target value. Tab. 1 shows
the hyperparameter configurations for our datasets. In all
the experiments, we set the initial value of T to 7 and use
Tf =6 context frames.
Estimation of the number of actions K. Our method re-
quires the number of actions K to be provided as a hyper-
parameter. For the Atari Breakout dataset, we pose K = 3
following the number of discrete actions in the real game.
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Figure 1: Overview of CADDY’s architecture used for the BAIR and the Tennis datasets. On the Atari Breakout dataset, due
to its simplicity, a version with lower capacity was employed. The model is composed of four main blocks: the encoder
network E, the dynamics network R, the action network A and the decoder network D. We indicate the number of features
at the top of each block. At the center, we show the factor such that the resolution of the output of the block is the input
resolution divided by the indicated factor.

BAIR and Tennis, however, do not possess an intrinsic dis-
crete action space, so the number of discrete actions re-
quired to capture the dynamics of the environment must
be estimated. From initial experiments, we observe that
this number can be over-estimated without negative conse-
quences on the training process, with the model using extra
actions to learn variations on the same action. On BAIR, we
estimate K=7 which allows 2 movements on each of the 3
axes to be learned, plus a no movement action. On Tennis,
we also choose K = 7, expecting to learn 2 movements on
the horizontal axis and 2 movements on the vertical axis, a
Stay action, a Hit the ball action and an extra action that al-
lows the model, if necessary, to learn an additional behavior
of the player.
Gumbel-Softmax temperature annealing. Hard Gumbel-
Softmax [8] discrete action sampling ensures that the action
component a is truly discrete. Using a hard sampling strat-
egy producing one hot vectors at the beginning of the train-
ing process, however, caused optimization difficulties. For
this reason, we adopt a soft Gumbel-Softmax sampling ap-
proach. At the beginning of training, we perform sampling
with a temperature of 1.0 which does not enforce a very low
entropy on the sampled action vector a. As the training pro-
gresses, we linearly reduce the sampling temperature to 0.4
at step 20.000, enforcing that the sampled values of a are
similar to one hot vectors.
Loss weights. We follow the hyperparameter selection pro-
cedure explained in Sec. 3.3 of the main paper to estimate
the loss weights on the Tennis dataset. The mutual informa-
tion maximization loss λact is used with weight 0.15, λrep

is set to 0.2, and λKL is used with weight 1e−4, while λarec
is posed to 1e−5. We found that these same values produce
similar optimization behaviors on the BAIR and on the Atari
Breakout datasets, so we use the same loss weights for all
the experiments.

Pretraining. We notice that convergence speed is increased
if the encoder network E and the decoder network D are
initialized to perform frame reconstruction. For this reason,
we integrate a short pretraining phase into our approach. In
particular, instead of computing st using the dynamics net-
work R, we employ a small auxiliary network to directly
translate ft to st so that E and D can be trained in isolation
on the reconstruction task. In this phase, the dynamics net-
work produces a reconstruction of st which we call ŝt, and
a reconstruction loss between st and ŝt is imposed. Gradi-
ents for this loss, however, are propagated through ŝt only.
The other loss terms remain unaltered.

Training times and GPU memory usage. We report in
Tab. 2 the memory requirements and training times for our
method on the different datasets and compare the results
with the baselines. CADDY requires 16GB of GPU mem-
ory to train on the Atary Breakout and Tennis dataset, and
44GB on the BAIR dataset due to the increased resolution.
In contrast, SAVP+ requires between 64GB and 128GB of
memory. Moreover, training times for our method vary be-
tween 68 and 320 GPU hours, while SAVP+ requires sig-
nificantly longer times between 730 and 1730 GPU hours.
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Atari Breakout BAIR Tennis

MoCoGAN [12] 16GB, 23h 16GB, 23h 16GB, 36h
MoCoGAN+ 16GB, 72h 16GB, 96h 16GB, 39h
SAVP [10] 32GB, 144h 32GB, 144h 16GB, 144h
SAVP+ 128GB, 1460h 128GB, 1730h 64GB, 730h

CADDY (Ours) 16GB, 107h 44GB, 320h 16GB, 68h

Table 2: GPU memory requirements in GB and time in
GPU hours for training the different methods on the cho-
sen datasets. CADDY trains significantly faster and with
lower memory requirements than the SAVP+ baseline.

FVD↓ Code Available

MoCoGAN [12] 503 X
CDNA [5] 297 X
SV2P [1] 263 X
SVG-LP [4] 257 X
SRVP [7] 181 X
VideoFlow [9] 131
SAVP [10] 116 X
DVD-GAN-FP [3] 110
TriVD-GAN-FP [11] 103
Video Transformer [13] 94

Table 3: FVD scores and code availability of a selection
of video prediction methods on the BAIR dataset in 64x64
resolution. Note that CADDY is not listed since it is not a
video prediction method.

3. Baselines selection

Since we present the first method for unsupervised PVG,
we select a set of baselines from existing video prediction
methods to adapt them to this new task. In Tab. 3, we com-
pare existing video prediction methods in terms of FVD in
the video prediction task on a 64x64 version of the BAIR
dataset, which we use as a benchmark to guide selection.
As the best and second-best performing methods with code
publicly available, we choose SAVP [10] and SRVP [7]
as baselines. Despite showing reduced performance, we
choose MoCoGAN [12] as an additional baseline because
its InfoGAN [2] loss for action learning makes it a good
candidate for adaptation to the PVG problem. Note that our
approach is not included in this comparison since CADDY
is not designed for future frame prediction.

4. Human evaluation details

In Figs. 2, 3, 4, 5 and 6, we show user votes obtained
during the AMT user study. Rows correspond to the differ-
ent actions learned by the models that were used to generate
the evaluated sequences, columns correspond to the action
options that were presented to the users. The MoCoGAN,
MoCoGAN+ and SAVP+ baselines do not learn a consistent
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Figure 2: AMT votes for MoCoGAN [12] on the Tennis
dataset. Rows correspond to the actions learned by the
model, columns correspond to the action options presented
to the users. A similar distribution of user votes is associ-
ated with each learned action.

action space. Indeed, their low Fleiss’ kappa measures [6]
(Sec. 4.2 of the main paper) show that users select differ-
ent options for sequences generated with the same action,
meaning that actions cause different effects based on the
particular initial frame used to produce the sequence. On
the other hand, the SAVP baseline (Fig. 4) learns actions
that result in a different distribution of user votes for each
row, indicating a partial capability of the model to condi-
tion its output based on the input action. Differently from
the other methods, CADDY (Fig. 6) presents for each row
a polarized response in a specific column, showing that our
method associates the same meaning to an action indepen-
dently from the starting frame. Some actions, including Act.
1 and Act. 5 present a lower user agreement. Despite the
low number of votes given to the Hit action, a manual anal-
ysis of the corresponding sequences reveals that they cor-
respond to the synthesis of ball hitting sequences, whose
typical movement of the arm is difficult to spot and typi-
cally associated with movement of the player. This explains
the portion of votes assigned to Left, Right, Forward and
Backward.

5. Human evaluation for Video Quality
We perform an additional human evaluation on the Ten-

nis dataset to assess the quality of the synthesized videos.
Since our method produces results in 256×96, we compare
only with baselines producing outputs in the same resolu-
tion to ensure fairness, namely MoCoGAN+ and SAVP+.
We run our study on AMT and ask users to express pref-
erence between one of two videos based on video quality.
One video is produced with CADDY and the other with
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Figure 3: AMT votes for MoCoGAN+ on the Tennis
dataset. Rows correspond to the actions learned by the
model, columns correspond to the action options presented
to the users. A similar distribution of user votes is associ-
ated with each learned action.
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42 12 37 26 26 38 49

19 7 26 81 25 20 52

5 7 12 62 7 10 127
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Figure 4: AMT votes for SAVP [10] on the Tennis dataset.
Rows correspond to the actions learned by the model,
columns correspond to the action options presented to the
users. The distribution of user votes is weakly dependent
on the learned action.

a baseline method. When compared to MoCoGAN+ and
SAVP+, users express preference for our method in respec-
tively 91.8% and 89.6% of cases.

6. Additional Qualitative Results

We provide a play.html page that contains a fully
playable CADDY model running in browser which allows
the reader to directly evaluate the performance of our ap-
proach. In addition, we produce a set of qualitative results
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24 17 10 91 13 29 46

42 14 9 88 12 18 47

Figure 5: AMT votes for SAVP+ on the Tennis dataset.
Rows correspond to the actions learned by the model,
columns correspond to the action options presented to the
users. A similar distribution of user votes is associated with
each learned action.
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Figure 6: AMT votes for CADDY on the Tennis dataset.
Rows correspond to the actions learned by the model,
columns correspond to the action options presented to the
users. The distribution of user votes is strongly dependent
on the learned action and users express agreement on the
effect produced by each learned action.

to show the capabilities of CADDY in the PVG task. In or-
der to better visualize the results, we provide a main.html
page showing qualitative results in the form of videos. In
the supplementary html page, we show demos of live user
interaction with CADDY and examples of videos produced
interactively by users. In addition, we present an action
conditioning evaluation showing the effects of each of the
actions learned by our model and provide reconstruction re-
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sults. The remaining of this section shows additional results
fitted for visualization on paper.

6.1. Action Directions Space Visualization

In this section, we analyze the learned space of action di-
rections dt. Fig. 7a shows the action space learned on BAIR,
where CADDY discovers two predominant categories of
actions that correspond to common small movements of
the robot hand. The remaining action categories are as-
signed to less common actions including lifting or lower-
ing the robot arm or making fast horizontal movements.
Fig. 7b illustrates the learned action space for Atari Break-
out. The model clearly divides the action directions into
three clusters corresponding to left movement, no move-
ment and right movement. In Tennis, as shown in Fig. 7c,
the model learns a rich action space whose structure is cor-
related with player movement. According to AMT user
votes, Action 6 (orange) corresponds to Stay and its corre-
sponding action directions occupy the center of the space.
Action 4 (green) and 7 (red) correspond respectively to right
and left movement and occupy opposing portions of the ac-
tion space. Similarly, Action 2 (blue) and 3 (light blue) cor-
respond to forward and backward movement and occupy
opposing positions in the action space. Finally, according
to human evaluation, Action 1 (dark blue) and Action 5
(yellow), which are positioned at boundary regions, have
mixed correspondence to the movements of the neighboring
regions and combine movement with ball hitting actions.

6.2. Interactively Generated Videos

We use CADDY to produce videos with direct user inter-
action. Starting from an initial frame, the user presses the
button on its keyboard corresponding to the action to use at
the current step, and the model generates the next frame. An
extract of the generated results is shown in Fig. 8, while the
complete videos are shown in the corresponding section of
the main.html page. Videos can also be interactively gener-
ated by the reader through the play.html page.

6.3. Action Conditioning Evaluation

In order to visualize the effects produced by each action
learned by CADDY, we consider an initial frame and, for
each action, we produce a sequence by repeatedly using the
current action as user input. We show the obtained results
in Fig. 9 and Fig. 10. On all the datasets, our model learns
actions that correspond to movement of the object of in-
terest along each axis. In addition, on the Tennis dataset,
CADDY learns actions related to ball hitting. In the corre-
sponding section of the main.html page, we show additional
video results both for CADDY and for the baselines.

Moreover, we analyze the action-conditional distribution
of the displacement ∆ associated with the object of inter-
est. We show the results in Fig. 11 for the BAIR dataset, in

Fig. 12 for the Atari Breakout dataset and in Fig. 13 for the
Tennis dataset. We observe that each action corresponds to
a distinct distribution of the displacement ∆ which captures
a specific movement direction. The other methods instead
present distributions that are more uniform across actions,
indicating a limited capability of learning actions that cor-
respond to the movement of the object of interest.

6.4. Action Variability Embeddings Evaluation

In this section, we perform an evaluation of the capacity
of action variability embeddings to capture variations of the
relative action. In particular, we consider a pair of actions ai
and aj . At inference time, since we pose action variability
embeddings vi = vj = 0, for Eq. (8) we have di = ci and
dj = cj i.e. the associated action directions are centered on
the action direction centroids. We argue that it is possible to
produce actions with intermediate effects between ai and aj
by sampling action variability embeddings corresponding
to action directions in intermediate locations between the
two action direction centroids.

Let l ∈ [0, 1] be an interpolation factor. We pose

a, c =

{
ai, ci if l <= 0.5

aj , cj if l > 0.5

v = l(cj − ci) + ci − c
The resulting action a and action variability embedding

v represent an intermediate action between ai and aj . In
Fig. 14 we show qualitative results representing the effects
obtained using intermediate actions that interpolate between
a pair of discrete actions.

6.5. Reconstruction Results

In this section, we show reconstructed sequences pro-
duced by our method. Note that additional results are
present in the corresponding section of the main.html page.
On the BAIR dataset (Fig. 15), our model correctly gener-
ates a robot arm that follows the relative movements of the
original sequence. We observe that the appearance of the
arm remains consistent in the whole sequence. On the other
hand, in the SAVP+ and MoCoGAN+ baselines the arm dis-
appears or shows artifacts towards the end of the sequence.

In Fig. 16, we show reconstruction results on the Atari
Breakout dataset. Our method correctly learns the action
space and the physics of the environment. The generated
player-controlled platform correctly matches the position
of that in the ground truth sequence, blocks that are hit by
the ball correctly disappear and the trajectory of the ball
closely follows that of the original video, even after multi-
ple bounces. In the baselines, instead, the generated plat-
form does not match the behavior of that in the original
sequence. Artifacts are present, especially in the MoCo-
GAN+ and SAVP+ baselines, where multiple platforms are
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Figure 7: Visualizations of the learned space of action directions dt with corresponding action direction centroids {ck}Kk=1,
grouped by action.

Action 5 Action 5 Action 5 Action 5 Action 5 Action 5 Action 1 Action 1 Action 6 Action 6 Action 6 Action 6
(a) BAIR

Act. 1 Act. 1 Act. 2 Act. 1 Act. 1 Act. 1 Act. 2 Act. 1 Act. 1 Act. 1 Act. 1 Act. 1 Act. 1 Act. 3 Act. 3 Act. 3

(b) Atari Breakout

Action 6 Action 4 Action 4 Action 5 Action 5 Action 5
(c) Tennis

Figure 8: Video sequences generated by CADDY with direct user interaction on the BAIR (a), Atari Breakout (b) and Tennis
(c) datasets. Additional videos are shown in the corresponding section of the main.html or can be directly generated using
the play.html page.

generated of the platform disappears. Moreover, when the
ball is generated, its trajectory follows the original one less
accurately.

On the Tennis dataset (Fig. 17 and Fig. 18) CADDY cor-
rectly reconstructs the pose and the movements of the player
and generates its shadow. The other baselines instead gen-
erate sequences with artifacts such as disappearing or faded
player, and disappearing or detached shadow.
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Figure 11: Distribution of the displacement ∆ associated with robot arm on the BAIR dataset. Ideal distributions are dif-
ferent for each action and have low variance, meaning that they capture specific movements. The displacement component
associated with movement on the vertical axis z is not shown. While the distributions of the displacement ∆ on the x and
y axes associated with the SAVP and SAVP+ baselines are influenced by the input action, they do not successfully capture
movement of the robot arm on the z axis. This is reflected in the ∆-MSE score which shows that the actions learned by our
model correspond to more specific movements than the ones learned by the baselines.
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Figure 12: Distribution of the displacement ∆ associated with the player-controlled platform on the Atari Breakout dataset.
Ideal distributions are different for each action and have low variance, meaning that they capture specific movements. Differ-
ently from the baselines, our model learns actions that correspond to specific movements of the platform.
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Figure 13: Distribution of the displacement ∆ associated with the player on the Tennis dataset. Ideal distributions are different
for each action and have low variance, meaning that they capture specific movements. Our model successfully conditions the
movement of the player on the action, while the other baselines show limited conditioning capabilities.
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Figure 14: Visualization of the last frame of sequences produced from the same initial frame with differing actions and action
variability embeddings. The sequences in red represent pure discrete actions where, action variability embeddings are posed
to 0. For the sequences in black instead, actions and action variability embeddings are derived as described in Sec. 6.4 to
represent intermediate actions between the two closest discrete actions using values of the interpolation factor of 0.3, 0.5 and
0.7. Note how the player positions depicted in the black sequences smoothly interpolate between the positions obtained with
pure discrete actions, showing the capability of action variability embeddings to capture variations on discrete actions.
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Figure 15: Reconstructed sequences on the BAIR dataset using the learned, discrete actions extracted from the original
sequence as inputs.
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Figure 16: Reconstructed sequences on the Atari Breakout dataset using the learned, discrete actions extracted from the
original sequence as inputs.
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Figure 17: Reconstructed sequences on the Tennis dataset using the learned, discrete actions extracted from the original
sequence as inputs.
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Figure 18: Reconstructed sequences on the Tennis dataset using the learned, discrete actions extracted from the original
sequence as inputs.
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