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In this Supplementary Material, we discuss additional

implementation details (see Sec. 1), training details (see

Sec. 2), provide details on the proposed datasets (see Sec. 3)

and show additional experimental results (see Sec. 4).

This Supplementary Material is complemented by a web-

site (see willi-menapace.github.io/playable-environments-

website) showing additional video qualitative results such

as sequences produced interactively by users, camera ma-

nipulation and style manipulation results. We also submit

our code for review which will be made publicly available.

1. Implementation Details

In this section, we discuss additional implementation

details for our method. Sec. 1.1 introduces NeRF [10],

Sec. 1.2 discusses the architecture of the models adopted

in our method, Sec. 1.3 discusses the implementation de-

tails of our feature renderer ConvNet, Sec. 1.4 describes

the organization of the objects of which the environment is

composed, Sec. 1.5 describes the sharing strategies that are

used to model different instances of the same object class

and Sec. 1.6 describes details regarding batch normalization

and pooling operations in the action module.

1.1. Introduction to NeRF

NeRF [10] represents scenes as radiance fields: a 5D

continuous function that maps a 3D position and a 2D view-

ing direction to an emitted color c and an opacity σ. NeRF

parametrizes such function as an MLP.

Given a desired camera perspective, the associated image

can be rendered exploiting the radiance field representation

*This work was partially done while interning at MPI for Informatics
†Equal senior contribution

[10]. A ray r is traced through each pixel and the associated

color is obtained by integration:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t))dt (1)

with

T (t) = exp

(

−

∫ t

tn

σ(r(s))ds

)

(2)

where T (t) denotes the accumulated transmittance, and tn
and tf represent the minimum and maximum distance from

the camera in which the integration is performed. In prac-

tice, the integral can be approximated through quadrature

[10]. N positions along each ray r are sampled and the as-

sociated color is computed as

Ĉ(r) =
N
∑

i=1

Ti(1− e−σiδi)ci (3)

with

Ti = exp(−

i−1
∑

j=1

σjδj) (4)

where c and σ are obtained by querying the MLP and δ
denotes the distance between successive samples.

In order to ease the learning of high frequency details,

NeRF employs positional encodings of the 3D position and

viewing direction as input to the underlying MLP. In ad-

dition, Mildenhall et al. [10] propose a stratified sampling

approach which exploits a coarse neural radiance field to

locate portions of the ray corresponding to visible surfaces

and allocates additional samples to the neighborhood of

such regions. A fine neural radiance field is used to com-

pute the final image using both the initial and the additional

sampled locations.
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The model is trained using L2 distance between the re-

constructed and the ground truth color value for each sam-

pled ray.

1.2. Architecture details

In this section, we discuss the details of the models em-

ployed in our framework. Fig. 1 shows the models em-

ployed on the Tennis dataset.

We make use of positional encodings [10] for both V and

the bending network B. We use 10 and 6 octaves respec-

tively and use the concatenation of the original vector and

the encodings as input. Following [12], we gradually intro-

duce the positional encodings in B during the first 60.000

training iterations. No viewing direction is given as input to

B and V to avoid artifacts when the environment is rendered

from a camera pose outside of the training distribution. In

addition, to reduce memory consumption, we do not make

use of the hierarchical sampling scheme (see Sec. 1.1).

We model the action network A following [9] and make

use of gumbel softmax sampling [6] to obtain discrete ac-

tion representations. In addition, to foster A in predicting

actions that are associated to movement, we use only object

positions xt as input rather than the complete environment

state st.

The temporal discriminator D receives as input the ob-

ject positions x and object poses π and is further condi-

tioned on the actions a and action variabilities v inferred on

the ground truth sequence.

We modulate the number of residual blocks in E based

on the expected size of the input image crop.

1.3. Feature Renderer Details

We propose to render feature maps at multiple resolu-

tions into the final image using a ConvNet feature renderer

F . Our ConvNet accepts feature maps {fi}
l
i=1

at l differ-

ent resolutions, each associated to a downsampling factor

di. We obtain feature map fi by integration of the features

sampled along the rays corresponding to pixel Imn in the

original image, such that

m ∈

{

di
2

+ 1 + kdi

}
h
di

−1

k=0

, n ∈

{

di
2

+ 1 + kdi

}
w
di

−1

k=0

(5)

where h and w are the image height and width and indexes

are expressed starting from 1. The process is illustrated in

Fig. 2. Note that each ray is sampled on a grid where the

points are at a vertical and horizontal distance of di from

one another and at distance di/2 from the border (see left

of Fig. 2 for a visualization of the sampled positions). Note

also that the ray is sampled at the pixel location in the orig-

inal image that corresponds to the center of the associated

local patch that will be synthesized by F .

In our implementation, we render two separate feature

maps at downsampling factors 8x and 4x (see Fig. 1) to

capture details at different scales. Note that this approach

allows rendering images using 12.8x fewer rays than NeRF

approaches that render each pixel with a separate ray, al-

lowing for important reductions in the use of memory and

in computational complexity and enables the model to ren-

der large image patches at training time. We experiment

with greater downsampling factors, but find that further in-

creasing them causes 3D consistency artifacts.

In the presence of calibration and localization noise dur-

ing training, we observe that NeRF models tend to gener-

ate blurry results which are particularly evident on dynamic

objects where calibration and localization errors are com-

pounded with errors in the estimation of the object pose. We

ascribe this phenomenon to the use of reconstruction losses

based on L2 distance which, in the presence of a color mis-

match between the ground truth and the reconstructed pixel

caused by input noise, favors the prediction of intermediate

color values, generating blur. Using a feature renderer pro-

vides two advantages over the traditional approach. First,

thanks to convolutional filters, the prediction for the fea-

ture associated to the current position can take into account

the values of neighboring positions, enabling the model to

produce a coherent output. Second, the possibility to ren-

der large patches makes it possible to adopt losses different

from L2 distance, such as the perceptual loss of Johnson et

al. [7] which penalizes more effectively implausible predic-

tions such as the ones containing blur.

1.4. Object Configurations

On the Minecraft dataset, we model the scene using four

objects. The first object models the static scene elements

close to the players, the second object models the distant

objects and the other two objects model the players. For

each ray, we sample 16 positions for the first model, 1 po-

sition for the second model and 32 positions for each of the

players.

On the Tennis dataset, we note that camera movement

in the input dataset is mostly limited to camera rotations.

Recovering depth information for the static objects is thus

an ill-posed problem which requires prior knowledge. Note

that this problem is not present for the players since their

change of position with respect to the camera allows the

learning of depth information. We thus adopt the following

objects to model the environment: an object to model the

tennis field which is bounded by a box β that does not rise

above ground level, an object to model the backplate of the
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Figure 1. Architecture of the models employed by our method on the Tennis dataset. The number in each block indicates the number of

output features or the upsampling factor in the case of upsampling operations. Merging of arrows indicates concatenation. The architecture

for the encoder E refers to the encoder for the static object models. We adopt a smaller encoder for the players. G.S. indicates Gumbel

Softmax [6]; Pos. Enc. indicates positional encoding.

Figure 2. Representation of the feature rendering process. We

sample points on rays arranged in a grid corresponding to feature

map locations, then the sampled points are rendered into feature

maps using our NeRF pipeline. The process is repeated to produce

feature maps at different resolutions. The feature rendered F uses

the rendered feature maps to reconstruct the original image.

tennis field, which is bounded by its box β to be a planar

surface, and two objects for the players. For each ray, we

sample 4 positions for the objects modeling the static scene

and 32 positions for each player.

Minecraft Background Modeling The Minecraft dataset

features a challenging environment with distant visible ob-

jects. NeRF++ [14] employs an inverted sphere scene back-

ground representation for modeling distant objects. While

effective, this parametrization requires a large number of

samples to model distant objects, which increases memory

consumption. To address this issue, we propose to model

background objects using a spheric background representa-

tion which requires a single sample for each ray. In par-

ticular, we model the spheric background with as an MLP

f = V (d, o), receiving as input the direction d and the ori-

gin o of the ray, and returning as output the associated fea-

ture. We consider the opacity σ of the associated feature to

always be 1. The parametrization on the ray origin allows

the model to simulate the effects of depth on the background

objects without requiring multiple samples.

1.5. Model Sharing

Instead of using a synthesis and an action module spe-

cific to each object, we note that objects corresponding to

the same class can, in principle, be represented by the same

model. In particular, in the Minecraft dataset, the two play-

ers have completely symmetric characteristics, so we model

both using a single shared model. While the same observa-

tion can be made for the case of the players in the Tennis

dataset, we found that the synthesis module fails if the same

model is used for both players. We explain this behavior

by observing that on the Tennis dataset the player closest

to the camera is always observed from the back, while the

player further from the camera is always observed from the

front. This asymmetry makes it harder for a model to learn a

unified player representation, so we model the players with

separate models.

1.6. Masked Batch Normalization and Pooling

In a video sequence, detection may fail in some frames.

In the action module, the environment state correspond-

ing to frames with missing detections and the successive

ones are replaced with placeholder values. As discussed in

Sec. 2.2, loss masking is used to prevent effects of place-

holder values on training. Nevertheless, the presence of

placeholder values may still alter the behavior of the ac-

tion module by affecting the estimation of batch statistics

in batch normalization layers and by affecting the behavior
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of operations such as global average pooling. To prevent

potential undesired effects on training, in the action mod-

ule we adopt masked versions of batch normalization and

of pooling operations that operate by computing statistics

only on non-placeholder values.

2. Training details

In this section, we describe training details for the syn-

thesis (see Sec. 2.1) and the action modules (see Sec. 2.2).

2.1. Synthesis module Training Details

We optimize the synthesis module parameters using

Adam [8] as optimizer and learning rate 5e− 4. The model

is trained for 300.000 iterations and the learning rate is ex-

ponentially decayed until 5e − 5 at the end of training. We

employ a batch size of 8 video sequences, each with 3 or 4

frames for Minecraft and Tennis respectively. To better dis-

entangle style from pose (see Sec. 3.3 on the main paper) we

do not use consecutive frames for each sequence, but skip

4 and 100 frames between each selected frame respectively

for Minecraft and Tennis.

In all the experiments, we consider input images of

size 512x288 and we render patches of size 192x192 and

256x256 respectively for Minecraft and Tennis during train-

ing. To improve the quality of playable objects, we sample

with increased frequency patches that contain the players.

The total loss is the weighted sum of the perceptual and

L2 reconstruction losses in pixel space. We assign a weight

of 1.0 to the L2 reconstruction loss and a weight of 0.1 to

the perceptual loss term.

The synthesis module is trained on 4x Nvidia RTX 8000.

We also train models on 1x Nvidia RTX 8000 on the Ten-

nis dataset using a reduced rendered patch size of 160x160

pixels with a small reduction in image quality.

Feature Renderer Pretraining. While it is possible to

learn the feature renderer network F from scratch, we find

it beneficial to start training from pretrained weights since

this guides the composable NeRF model towards learning

features encodings whose mapping to the image space is

already known. We obtain these weights with a pretrain-

ing process. We add a temporary encoder ConvNet to F
and train it as an autoencoder, using the same combination

of perceptual and L2 losses used for training of the syn-

thesis module. To avoid disruption of the learned features

in the early stage of training of the synthesis module, we

freeze F during the first training iterations of the full model

and unfreeze it once the composable NeRF model features

become close to the ones the temporary ConvNet encoder

would have produced.

2.2. Action module Training Details

For the action module, we make use of Adam [8] as op-

timizer with β1 = 0.5 and β2 = 0.999, and use a learning

rate of 5e − 4. We train the model for 300.000 iterations

with an exponentially decayed learning rate which reaches

the value of 5e − 5 at the end of training. The action mod-

ule and the discriminator are optimized in alternation. We

regularize the discriminator training using spectral normal-

ization [11].

We note that at inference time our autoregressive dynam-

ics network receives as input sequences of reconstructed en-

vironment states ŝt rather than environment states st pro-

duced by E as happens during training. Following [9], to

avoid performance degradation at inference time due to this

mismatch, we propose to train the action module using as

input to the dynamics network encoded environment states

for the first t steps and reconstructed environment states for

the following ones. In all the experiments we use 4 initial

encoded environment states.

In addition, we employ a curriculum learning strategy

where we linearly increase the length of the reconstructed

sequences during training. In particular, at the beginning

of training, sequences of 5 environment states are recon-

structed, while at the end of the annealing period at step

25.000 the reconstructed sequence length is set to 9. We

use a batch size of 64 sequences.

Following [9], we set the number of actions K to 7 for

all the experiments.

We set λrec = 1.0, λact = 0.15, λ∆ = 0.1 and λG = 0.1
in the computation of the total loss term.

The action module is trained on 1x Nvidia RTX 8000.

Loss masking. During training of the action module, some

frames may not contain a valid detection for each playable

object. This may be due to the absence of the object in the

frame or due to missed detections. We address this issue

by computing the loss terms Lrec, Lact and L∆ by taking

into account only the prefix of the input sequence where the

object has always been detected.

3. Datasets

In this section we describe the proposed Minecraft and

Tennis datasets for the training of playable environments in

in Sec. 3.1 and in Sec. 3.3 respectively. We also present

details for the Minecraft Camera dataset in Sec. 3.2 and the

Static Tennis dataset in Sec. 3.4.

3.1. Minecraft dataset

We collect videos where two Minecraft players perform

a sparring session. To acquire the sequences we build a

4



Tournament Raw duration Processed duration Success

Us Open 23.090 20.912 90.6

Australian Open 12.267 11.778 96.0

Wimbledon 12.014 11.574 96.3

Roland Garros 8.448 1.205 14.3

Total 55.819 45.469 81.5

Table 1. Statistics on the collected Tennis dataset indicating the

duration of the collected raw sequences before camera calibration

and player detection and the duration of the processed sequences

for which camera calibration and player detection was performed

successful. Success indicates the success rate in camera calibra-

tion and player detection. Dirt on the tennis lines causes a low

success rate for Roland Garros sequences. Durations in seconds,

success rate in %.

Minecraft 16.4 [2] plugin based on [3] (GNU GPL v3). The

plugin records Minecraft playing sessions and provides a

GUI to replay the recorded sessions and render them under

arbitrary camera trajectories. In addition, it is possible to re-

render each sequence using different sets of textures for the

environment and the players. Our plugin complements the

rendered video with metadata containing camera intrinsic

and extrinsic parameters and information about the entities

that are present in the scene (eg. players). We release the

code for the modified plugin to foster the use of Minecraft

as a research tool.

We acquire sequences under varying illumination condi-

tions where the camera slowly circles in a dome around the

sparring area. Scenes at both day and night are recorded.

The training set is composed of 69,600 frames in 1024x576

resolution at 20fps, divided in sequences of 400 frames. The

test set and the validation set are composed each of 2,960

frames in sequences of 16 frames at 5fps. A total of 16

unique player identities are present. Note that the dataset

can be automatically re-generated at arbitrary resolution and

framerate.

3.2. Minecraft Camera dataset

In order to evaluate the camera manipulation capabilities

of our method, we collect additional Minecraft sequences.

In each sequence, the camera starts from an initial pose and

is then moved in the neighborhood of the original position

in a circular pattern to synthesize novel views of the scene.

To allow a better evaluation of novel view synthesis, the

rendered scene remains unchanged in all the frames. We

collect 24 sequences, each of length 16 frames for a total of

384 frames.

3.3. Tennis dataset

We build a dataset of tennis match videos collected from

YouTube. We collect a total of 43 tennis matches, featuring

86 different player appearances. The matches come from

the following tournaments: 13 Us Open matches played on

a concrete field, 7 Australian Open matches played on a

concrete field, 8 Wimbledon matches played on grass, 15

Roland Garros matches played on red ground. In each orig-

inal video, we extract portions of the match where the game

is actively being played, from the moment of the service to

the realization of the point, and discard parts where no ac-

tion is occurring. We then process such raw sequences to

extract camera calibration information and player bounding

boxes.

To perform camera calibration, we exploit the known ge-

ometry of the tennis field, using the field itself as a calibra-

tion pattern. To detect landmarks on the tennis field, we

follow [4] using the implementation provided in [1] (BSD

3-Clause). Note that camera parameters obtained in this

way present noise due to imprecision in the estimation of

landmarks on the tennis field. We discard sequences with

implausible camera poses or where camera calibration is ex-

cessively noisy using variance in the estimated camera po-

sition on the field as a noise estimator. In some sequences,

camera calibration fails due to the inability to correctly de-

tect the landmarks. This often happens in sequences from

Roland Garros where the field lines are frequently covered

by red ground and causes a high number of sequences from

Roland Garros to be discarded. When possible, we pro-

vide camera parameters estimations for frames where land-

mark detection fails by interpolating the camera parameters

of neighboring frames.

To perform player detection, we make use of a pretrained

FasterRCNN [13] model. We employ the camera calibra-

tion parameters obtained in the preceding step to discard

detections associated with people other than the players,

i.e. referees, ball catchers and spectators. We notice that

detection is sometimes inaccurate or fails due to the wide

range of movements performed by the players. This hap-

pens more frequently for the player positioned further from

the camera. Similarly to camera calibration, we discard se-

quences where detection of one of the players presents an

excessive number of failures. When possible, in case of

failed detections in one frame, we interpolate the detections

of neighboring frames to produce an estimated detection.

The sequences where both camera calibration and player

detection complete successfully are selected to be part of

the dataset. Tab. 1 shows the duration statistics for the raw

sequences before camera calibration and player detection

and for the sequences that were successfully processed. A

total of 12.6 hours of videos at 5 fps and 512x288 resolution
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are successfully processed and are organized in our dataset

as follows: 212464 frames as training set organized in se-

quences of variable length, 6000 frames as validation set

organized in sequences of 16 frames, and 6384 frames for

test divided in sequences of 16 frames. Note that the orig-

inal videos are in 1920x1080 resolution and 25fps, so the

dataset can be automatically re-generated up to such resolu-

tion and framerate.

3.4. Static Tennis dataset

We adopt the Tennis dataset of [9] to compare with pre-

vious playable video generation methods. The dataset is

composed of video sequences from 2 matches recorded in

the same arena and features 4 players with similar appear-

ance. A total of 40 minutes of training videos is present.

The validation and the test set are composed respectively of

2800 and 3280 frames divided in sequences of 16 frames ac-

quired at 5fps. In order to satisfy the assumptions of previ-

ous methods, the dataset features limited camera movement

and each video is cropped to depict only a single player in

the lower part of the field.

4. Experiments

In this section we show additional experimental results.

Our experiments are complemented by a website (see willi-

menapace.github.io/playable-environments-website) show-

ing additional video qualitative results including video se-

quences produced interactively by users, camera and style

manipulation results, and samples of dataset sequences.

Sec. 4.1 shows a user study for the evaluation of video qual-

ity, Sec. 4.2 shows additional playability evaluation results,

Sec. 4.3 describes the user study for the evaluation of playa-

bility, Sec. 4.4 shows ablation results for the synthesis mod-

ule, Sec. 4.5 shows ablation results for the action module,

Sec. 4.6 presents additional results for camera manipulation

and Sec. 4.7 shows style manipulation results.

4.1. Synthesis module User Study

In order to further evaluate video quality improvements

with respect to CADDY [9], we run a user study on video

quality against [9] on the Static Tennis dataset, the original

dataset of [9]. Note that, for fairness of comparison, we

make use of the Static Tennis dataset which does not fea-

ture the several challenges addressed by our method but not

by CADDY [9], such as wide camera movements, multiple

players and changes in appearance.

We create 206 video pairs with the two methods and ask

3 distinct AMT users to express their preference in terms of

video quality between the two videos. 618 votes expressed

Aux. H.Res. L∆ LPIPS↓ FID↓ FVD↓ ∆-MSE↓ ∆-Acc↑ ADD↓ MDR↓

(i) 0.743 288 3667 1.0 (100) 15.1 96.8

(ii) ✓ 0.773 296 2906 0.999 52.8 56.3 93.2

(iii) ✓ ✓ 0.677 211 2213 0.998 53.7 42.5 82.9

(iv) ✓ ✓ 0.707 275 2553 0.467 83.3 56.2 92.2

(v) ✓ ✓ ✓ 0.691 309 2187 0.439 82.6 17.4 95.1

(Ours) 0.204 16.8 329 0.271 77.7 17.8 33.9

Table 2. Comparison with baselines on the Minecraft dataset.

Aux.: use of auxiliary bounding box and camera pose informa-

tion; H.Res. use of the high resolution model; L∆ use of the loss

for ∆-MSE. ∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

by 18 distinct AMT users are gathered and assign a prefer-

ence of 81.6% to our method.

4.2. Playability evaluation

In Tab. 2, we present playability evaluation results on

the Minecraft dataset. As for the Tennis dataset, our method

surpasses the baselines both in terms of video and action

quality metrics. In particular, the high variation in camera

pose in this dataset is not correctly modeled by the base-

line methods which produce irrealistic results. Note that (i)

and (iv) show a better ∆-ACC than our method which is ex-

plained by their learned action space which only discovers

a reduced number of action categories as confirmed by the

high ∆-MSE and by Fig. 5.

We show qualitatives results for both the Minecraft and

Tennis datasets in Fig. 6 and Fig. 7 respectively. The move-

ments of the players reconstructed by our method match the

ones in the ground truth sequence, indicating that a good

action representation is learned. In addition, our model syn-

thesizes players performing motions that are more realistic

than the ones produced by the baselines.

We show a representation of the learned action space on

both the Minecraft and Tennis datasets in Fig. 5.

4.3. Playability User Study

To further evaluate the quality of the action space we

perform a user study (see Tab. 3) on the Tennis dataset, fol-

lowing the protocol of Menapace et al. [9]. We sample a

set of 26 frames from the test set and for each frame we

produce video continuations conditioned on each learned

action. Two separate videos are produced for each initial

frame and action, the first cropped on the lower tennis field,

the second cropped on the upper tennis field to ensure a

single tennis player is depicted in each video. For each pro-

duces sequence, we ask 3 Amazon Mechanical Turk users

to choose which is the performed action between a set of

6



Aux. H.Res. L∆ Agreement↑ Diversity↑ Other votes

CADDY [9] (iii) ✓ ✓ 0.353 1.77 1.86

CADDY [9] (v) ✓ ✓ ✓ 0.170 1.71 24.7

(Ours) 0.444 1.7 0.80

Table 3. User study results on the Tennis dataset. Aux.: use of

bounding boxes and camera pose; H.Res. use of the high resolu-

tion model; L∆ use of the loss for ∆-MSE. Other votes in %.

options. We then measure agreement between the users

using the Fleiss’ kappa measure [5] and compute diversity

in the generated actions using entropy of user-selected ac-

tions. We consider only the baselines with the highest video

quality and with the best action space metrics. Our model

achieves the best agreement and comparable diversity to the

baselines indicating that the model generates videos that are

consistently conditioned by the action and that no mode col-

lapse of the learned actions is present.

4.4. Synthesis module Ablation Study

We present ablation study results for the synthesis mod-

ule on the Tennis dataset in Tab. 4 and present qualitative

results in Fig. 3 and Fig. 4 respectively for the Minecraft

and Tennis datasets. The evaluation confirms the impor-

tance of the use of style modulation layers to model ap-

pearance changes and of the bending network to model de-

formations. In addition, without our feature renderer F , the

model produces blurry results and lacks details such as the

wrinkles on the clothes. Introducing the feature renderer

F allows the model to be trained on complete patches ap-

plying the perceptual loss term. This, in conjunction with

the ability of ConvNets to model inter-pixel relationships,

enables the model to reduce blur and to generate clothing

that contains more detailed wrinkles. We also note that, in

some sequences, the feature renderer is capable of generat-

ing realistic player shadows in portions of the image that lie

outside of the bounding volume β for the radiance field of

the player. We ascribe this to the capacity of the ConvNet F
to model the correlation between the presence of the player

and of its shadow.

4.5. Action module Ablation Study

In Fig. 12 we show qualitative results for the action

module ablation study on the Minecraft dataset. We note

that, while method variations that do not use the temporal

discriminator D produce player movements closer to the

ground truth sequence, they tend to produce less realistic

motions for the moving players.

Var. Multi ⟨3⟩ π ⟨4⟩ w ⟨5⟩ F ⟨6⟩ LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓

(a) 0.505 256.1 7011 72.2 85.6

(b) ✓ 0.619 271.4 10697 3.57 100.0

(c) ✓ ✓ 0.624 253.5 7280 2.65 28.6

(d) ✓ ✓ ∼ 0.319 96.3 3303 79.8 85.4

(e) ✓ ✓ ✓ 0.286 39.3 638 3.11 7.34

(f) ✓ ✓ ✓ ∼ 0.272 39.2 2678 46.9 60.5

Full ✓ ✓ ✓ ✓ 0.167 17.1 497 2.56 3.90

Table 4. Synthesis module ablation results on the Tennis dataset.

Multi: use of multi-object modeling, π: use of deformation, w:

use of style modulation layers or of direct style encoding (∼), F :

use of the feature renderer or of the simplified renderer (∼). ADD

in pixels, MDR in %.

Figure 3. Synthesis module reconstruction results on the Minecraft

dataset. The first image is cropped for better visualization. Multi:

use of multi-object modeling, π: use of deformation, w: use of

style modulation layers or of direct style encoding (∼), F : use of

the feature renderer or of the simplified renderer (∼).

4.6. Camera manipulation evaluation

We evaluate camera manipulation capabilities for our

method on the Tennis dataset. We consider each test se-

quence and sample two random camera poses by applying

noise to the camera pose parameters in the first frame. We

then generate a camera trajectory by interpolating between

the two poses and render the sequence from the novel cam-

era trajectory. Note that in the Tennis dataset the largest

portion of the image is occupied by the field plane. Conse-

quently, we can approximately match each image rendered

from the novel trajectory to the corresponding original im-
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Figure 4. Synthesis module reconstruction results on the Tennis

dataset. The image is cropped for better visualization. Multi: use

of multi-object modeling, π: use of deformation, w: use of style

modulation layers or of direct style encoding (∼), F : use of the

feature renderer or of the simplified renderer (∼).

Aux. H.Res. L∆ LPIPS↓ FID↓ ADD↓ MDR↓

(i) 0.659 224 50.4 82.0

(ii) ✓ 0.623 170 54.7 33.7

(iii) ✓ ✓ 0.425 26.1 38.1 29.2

(iv) ✓ ✓ 0.634 164 57.4 41.7

(v) ✓ ✓ ✓ 0.574 216 35.0 66.7

(Ours) 0.205 20.5 13.9 5.76

Table 5. Camera control evaluation results on the Tennis dataset.

Aux.: use of bounding boxes and camera pose; H.Res. use of the

high resolution model; L∆ use of the loss for ∆-MSE. ADD in

pixels, MDR in %.

age by applying a homography. We then compute recon-

struction losses between the original and the generated se-

quence warped according to the corresponding homogra-

phy. While this evaluation does not account for parts of the

image that do not lie on the field plane such as the players,

it can be used to detect failure cases. We show the results in

Tab. 5. LPIPS, ADD and MDR highlight that our method

obtains better consistency than the baselines in the genera-

tion of novel camera views. In addition, we show qualita-

tives in Fig. 8 and Fig. 9 respectively for the Minecraft and

Tennis dataset.

4.7. Style manipulation evaluation

In Fig. 11 and Fig. 10 we show qualitative style manip-

ulation results obtained with our method. We consider a

target style image from which we extract the style code w
for each object. We then replace the style code in the envi-

ronment state extracted from a source image with the target

style and re-render the image using the synthesis module.

Our method can successfully change the appearance of the

players and of the static scene elements.

5. Discussion

The following section discusses the main limitations of

the method and social implications.

Limitations. Our method performs some assumptions on

the structure of the environment. First, while the appearance

of the environment can change, the method assumes a con-

stant geometry of the environment, preventing it from op-

erating on datasets with actions performed in environments

with different geometries. Second, in order to estimate the

pose of dynamic objects, the method assumes that moving

objects are located on the y = 0 plane. Lastly, while on the

Minecraft dataset our method is learns a full 3D environ-

ment, on the Tennis dataset the presence of camera rotations

but not of camera translations makes the problem of recov-

ering the field geometry ill-posed. We thus impose a “flat

world” prior in order to regularize the geometry learned on

this dataset, which is detailed in Sec. 1.4. This prior allows

wider camera manipulations at inference time, but has the

effect of projecting parts of the background on flat surfaces,

causing visual artifacts when the position of the camera dif-

fers from the one of the original dataset.

We also note that our method exhibits blur artifacts or

missing-part artifacts in regions of the scene corresponding

to thin and fast-moving objects such as the limbs of players

or the rackets. The challenging nature of the Tennis dataset

with frequent motion blur, object parts as small as a few pix-

els (eg. limbs) and noise in camera calibration is the main

reason behind these artifacts that are partially addressed by

our feature renderer.

When learning actions, it is important to consider both

ease of manipulation, and the portion of interesting actions

that can be captured. Users are typically mainly interested

in manipulating the position of objects which is often cor-

related to the change in poses. Thus, to ease the manipula-

tion, we found an ideal solution in learning actions related

to changes in position and letting the model synthesize the

corresponding change in poses. The main limitation caused

by this tradeoff between action space simplicity and action

space expressiveness is that it is difficult to control the syn-

thesis of actions featuring changes in pose that are not di-
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Figure 5. Visualization of the learned action space on the Minecraft and Tennis datasets for our method and the baselines. Each plot shows

∆ movements of the playable objects measured on the ground plane between a pair of successive frames. Colors indicate the different

action label that is associated to each movement. ‘Inferred’ movements are measured on the test sequences, thus the plots shows the actions

inferred by the action network as a function of the input states. ‘Generated’ movements are measured on the generated sequences, thus the

plots show the movement generated by the dynamics network as a response to the current action input. It can be observed that our method

produces sharper decision boundaries between the actions associated to movement. In addition, the distribution of ‘Generated’ movements

produced as a response to each action input matches the distribution of the ‘Inferred’ movements associated to the same action. Aux.: use

of auxiliary bounding box and camera pose information; H.Res. use of the high resolution model; L∆ use of the loss for ∆-MSE.

rectly correlated to changes in position, such as the swing

of the racket.

Lastly, we remark that at inference time objects in the

scene are animated independently from each other. This

can generate artifacts such as both tennis players swinging

the rackets at the same time and makes it not possible to

capture interactions between objects in the scene.

Social Implications. Similarly to methods operating on

face and human appearances, our method could be used

to deceive, and can potentially be used to tamper video

sequences for nefarious purposes. However, we note that

the constant environment geometry assumed by the method

provides some protection against fraudulent uses since the

method requires a certain scene to appear in many videos in

the training dataset in order to allow its subsequent manip-

ulation. This would make it not straightforward to tamper

an isolated video for which the malicious individual does

not dispose of a corresponding collection of videos of the

same scene to use for training. We believe that the benefits

brought in terms of novel creative applications and enhance-

ments to user creativity outweigh the potential risks.
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Figure 6. Reconstruction results on the Minecraft dataset. Starting from the first frame, the dynamics network reconstructs the ground truth

video using the sequence of discrete actions inferred by the action network on the original sequence. Aux.: use of auxiliary bounding box

and camera pose information; H.Res. use of the high resolution model; L∆ use of the loss for ∆-MSE.

Figure 7. Reconstruction results on the Tennis dataset. Starting from the first frame, the dynamics network reconstructs the ground truth

video using the sequence of discrete actions inferred by the action network on the original sequence. Aux.: use of auxiliary bounding box

and camera pose information; H.Res. use of the high resolution model; L∆ use of the loss for ∆-MSE.
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Figure 8. Camera manipulation results on the Minecraft Camera dataset. Ground truth shows the reference frame, upper rows show camera

manipulation results. Aux.: use of auxiliary bounding box and camera pose information; H.Res. use of the high resolution model; L∆ use

of the loss for ∆-MSE.

Figure 9. Camera manipulation results on the Tennis dataset. Ground truth shows the reference frame, upper rows show camera manipu-

lation results. To highlight camera manipulation errors, we overlay each generated image with the position where the field lines should be

synthesized under the manipulated camera pose. Aux.: use of auxiliary bounding box and camera pose information; H.Res. use of the high

resolution model; L∆ use of the loss for ∆-MSE.
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Figure 10. Style transfer results on the Tennis dataset. The topmost row shows the target style, the leftmost column shows the image in

which the style is injected.
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Figure 11. Style transfer results on the Minecraft dataset. The topmost row shows the target style, the leftmost column shows the image in

which the style is injected.

Figure 12. Reconstruction results on the Minecraft dataset. Starting from the first frame, the dynamics network reconstructs the ground

truth video using the sequence of discrete actions inferred by the action network on the original sequence. Rel. use of camera relative

residual ∆ output, D use of the temporal discriminator, L∆: use of the loss for ∆-MSE.
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